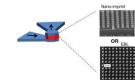
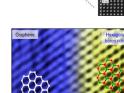

National Science Foundation


Electronics, Photonics, and Magnetic Devices (EPMD)



US-Ireland R&D Partnership ProgrammeWorkshop

September 29 - October 1, 2014

Dr. Dimitris Pavlidis Program Director Electrical, Communications and Cyber Systems Division

- Address fundamental research issues at the nano, micro, and macro scales underlying device and component technologies, energy and power, controls, communications, computation, sensing and cyber systems
- Support integration of systems principles in complex engineering systems and networks for a variety of applications domains
- Ensure education of a diverse workforce to meet the technological challenges of a 21st century global economy

Electronics, Photonics, and Magnetics Devices (EPMD) Program Goals

- Seeks to improve the fundamental understanding of devices and components based on the principles of microelectronics, optics and photonics, optoelectronics, magnetics, electromechanics, electromagnetics, and related physical phenomena.
- Enables discovery and innovation advancing the frontiers of nanoelectronics, spin electronics, molecular and organic electronics, bioelectronics, biomagnetics, non-silicon electronics, and flexible electronics.
- Emphasizes emerging areas of diagnostic, wearable and implantable devices and sensors, and supports manipulation and real-time measurement with nanoscale precision through new approaches to imaging and metrology.

Managed by

Dr. Dimitris Pavlidis, Ms. Dominique Dagenais, Dr. Mahmoud Fallahi, Dr. Usha Varshney (Vacant) 3

Electronics, Photonics, and Magnetics Devices (EPMD)

Dr. Dimitris Pavlidis

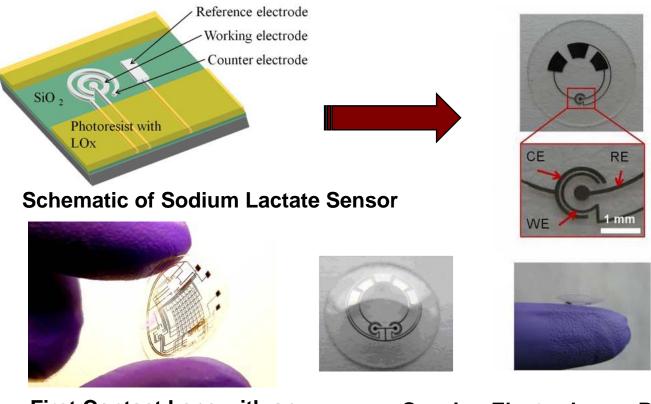
- Microwave/mm-Wave/THz Devices & Components, and Electromagnetic Effects-based Components
- Nanoelectronics & Next Generation Devices, Semiconductor Material Device Interaction and Reliability
- Widebandgap Semiconductors and Devices, Circuits, Device/Circuit Simulation & Modeling
- Metamaterial and Plasmonic-Based Devices & Components

Vacant

- Flexible, Printed and Organic Electronics & Photonics
- Carbon-based Electronics
- "Beyond" graphene 2D materials and devices
- Nano-electronics and Energy-Efficient electronics

Dr. Usha Varshney

- Bioelectronics & Biomagnetics Devices
- Magnetics, Spin Electronics, Quantum Devices
- Sensor Device Technologies
- Next Generation Memories


Dr. Mahmoud Fallahi & Ms. Dominique Dagenais

- Nanophotonics, Metamaterials & Plamonics
- Advanced Optical Sources & Photo-detectors
- Nonlinear & Ultrafast Photonics
- Photonics Integrated Circuits
- Optical Communication Components
- Single-photon and Quantum Devices
- Optical Imaging & Sensing
- Solar Cells & Photovoltaic Components

Dr. Usha Varshney

SGER-0533100, CAREER-0644084, EFRI-0937710 Babak Parviz, U. of Washington

First Contact Lens with an Integrated Lactate Sensor

Sensing Electrodes on Polyethylene Terepthtalate (PET) Substrate

Biosensor utilizing Lactate Oxidase (LOx) Enzyme Immobilized on a Si\SiO2 Substrate for the Detection of Sodium Lactate. (Reported by MSNBC, Fox News, and Huffington Post)

Electronics, Photonics, and Magnetics Devices (EPMD)

Dr. Dimitris Pavlidis

- Microwave/mm-Wave/THz Devices & Components, and Electromagnetic Effects-based Components
- Nanoelectronics & Next Generation Devices, Semiconductor Material Device Interaction and Reliability
- Widebandgap Semiconductors and Devices, Circuits, Device/Circuit Simulation & Modeling
- Metamaterial and Plasmonic-Based Devices & Components

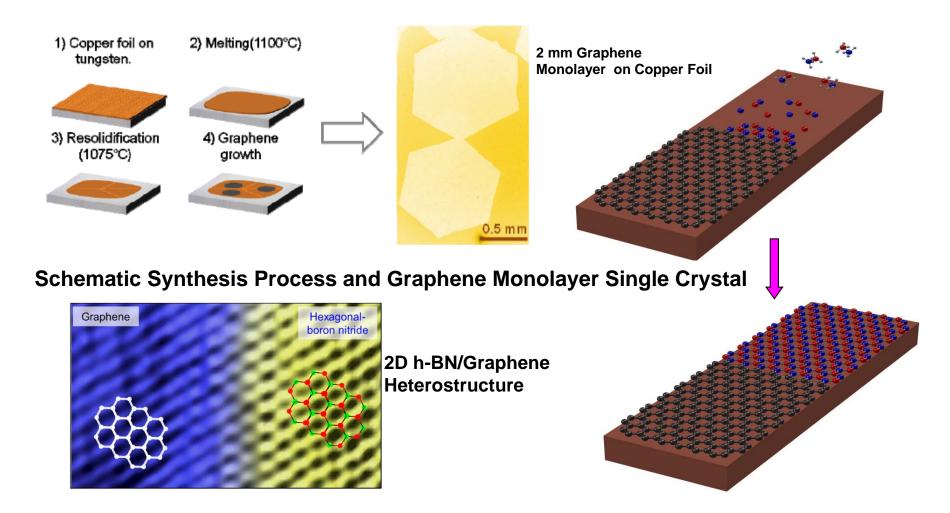
Vacant

- Flexible, Printed and Organic Electronics & Photonics
- Carbon-based Electronics
- Beyond Graphene 2D Materials and Devices
- Nanoelectronics and Energy-Efficient Electronics

Dr. Usha Varshney

- Bioelectronic & Biomagnetic Devices
- Magnetics, Spintronics and Quantum Devices
- Sensor Devices Technologies
- Next Generation Memories

Dr. Mahmoud Fallahi & Ms. Dominique Dagenais


- Nanophotonics, Metamaterials & Plamonics
- Advanced Optical Sources & Photo-detectors
- Nonlinear & Ultrafast Photonics
- Photonics Integrated Circuits
- Optical Communication Components
- Single-photon and Quantum Devices
- Optical Imaging & Sensing
- Solar Cells & Photovoltaic Components

Vacant

(Dr. Anupama Kaul)

ECCS-1231808 Gong Gu, U. of Tennessee

Novel Graphene-Insulator-Graphene Tunneling Junction Devices & Metal Oxide-Graphene-Silicon FET for High-Speed Electronics. (Science 2014)

Electronics, Photonics, and Magnetics Devices (EPMD)

Dr. Dimitris Pavlidis

- Microwave/mm-Wave/THz Devices & Components and Electromagnetic Effects-based Components
- Nanoelectronics & Next Generation Devices Semiconductor Device Interaction and Reliability
- Widebandgap Semiconductors Devices and Circuits, Simulation & Modeling
- Metamaterial and Plasmonic-Based Devices

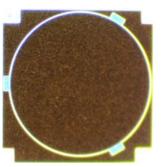
• Vacant

- Flexible, Printed and Organic Electronics & Photonics
- Carbon-based Electronics
- "Beyond" graphene 2D materials and devices
- Nano-electronics and Energy-Efficient electronics

Dr. Usha Varshney

- Bioelectronic & Biomagnetic Devices
- Magnetics, Spintronics and Quantum Devices
- Sensor Devices Technologies
- Next Generation Memories

Dr. Mahmoud Fallahi & Ms. Dominique Dagenais


- Nanophotonics, Metamaterials & Plamonics
- Advanced Optical Sources & Photo-detectors
- Nonlinear & Ultrafast Photonics
- Photonics Integrated Circuits
- Optical Communication Components
- Single-photon and Quantum Devices
- Optical Imaging & Sensing
- Solar Cells & Photovoltaic Components

Dr. Dimitris Pavlidis


ECCS-1309894 Mohammed Afsar, Tufts U. & DARPA

Microphotograph Top View of 1.4 mm Diameter Circulator Fabricated with a 180nm CMOS Process

Top View of Circulator Chip after Etching SiO₂ Operational in 10 GHz -100 GHz Range

Post-processing Steps to the Prototype Chip

Broadband Millimeter-Wave Barium and Strontium Hexagonal Nano-Ferrite Circulator Integrated in CMOS Technology (J of Appl. Phys. 2014)

Dr. Dimitris Pavlidis

- Microwave/mm-Wave/THz Devices & Components, Electromagnetic Effects
- Nanoelectronics & Next Generation Devices, Semiconductor Material Device Interaction and Reliability
- Widebandgap Semiconductors and Devices, Circuits, Simulation & Modeling
- Metamaterial and Plasmonic-Based Devices & Components

Vacant

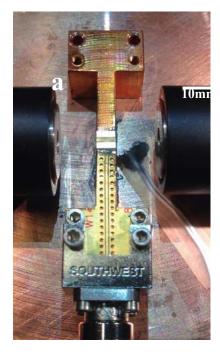
- Flexible, Printed and Organic Electronics & Photonics
- Carbon-based Electronics
- "Beyond" graphene 2D materials and devices
- Nano-electronics and Energy-Efficient electronics

Dr. Usha Varshney

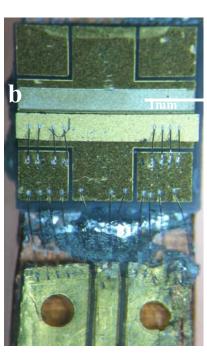
- Bioelectronic & Biomagnetic Devices
- Magnetics, Spintronics and Quantum Devices
- Sensor Devices Technologies
- Next Generation Memories

Dr. Mahmoud Fallahi and Ms. Dominique Dagenais

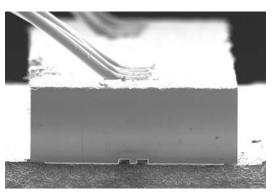
- Nanophotonics, Metamaterials & Plamonics
- Advanced Optical Sources & Photo-detectors
- Nonlinear & Ultrafast Photonics
- Photonics Integrated Circuits
- Optical Communication Components
- Single-photon and Quantum Devices
- Optical Imaging & Sensing
- Solar Cells & Photovoltaic Components

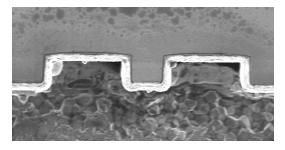


Dr. Mahmoud Fallahi



Ms. Dominique Dagenais


Collaborative: ECCS-1230517 / 1230477 Alexey Belyanin,Texas A&M U. & Federico Capasso, Harvard U.


Laser Mounted to the end of a Microwave Strip-line

Short Wire-bonding Between QCL and Microwave Strip-line

Quantum Cascade Lasers (QCL) Mounted Epi-side down to an AIN Submount

View of the Facet

CW QCL Packaged for High-speed Modulation and Emission in a Ring Cavity for Generation of Picosecond Pulses. (Appl. Phys. Lett. 2013)

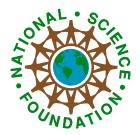
- NSEC Nanoscale Systems in Information Technologies, Principal Investigator-Alexander Gaeta, Institution - Cornell U., Brigham Young U., CCNY, Colgate U., Pomona College (Varshney)
- NERC Nanosystems, Principal Investigator- Greg Carmen, Institution UCLA (Kaul)
- ERC Center for Intelligent Access Network (CIAN), Principal Investigator-Nasser Peyghambarian, Institution - U. of Arizona, CalTech, Norfolk State U., Tuskegee U., the UCBerkeley, UCSan Diego, and UCLA, and USC (Dagenais)
- ERC Mid-Infrared Technologies for Health and Environment (MIRTHE), Principal Investigator- Claire Gmachl, Institution – Princeton (Pavlidis/Dagenais)
- ERC Quantum Energy and Sustainable Solar Technologies (QESST)
 Principal Investigator- Christiana Honsberg, Institution ASU (Pavlidis)
- Network for Computational Nanotechnology (NCN), NSF 12-504, (Cyber Platform, NanoBIO, NanoMFG and NEEDS) Nano-Engineered Electronic Device Simulation Node (NEEDS) - Principal Investigator- Mark Lundstrom, Institution – Purdue U. (Pavlidis)

- 2011-2013 ENG Emerging Frontiers in Research and Innovation (EFRI),
 - » Flexible Bioelectronics Systems (BioFlex), NSF 11-571 & NSF 12-583, (Varshney)
 - » Two-Dimensional Atomic-layer Research and Engineering (2-DARE) with AFOSR, NSF 13-583 (Kaul)
- Dear Colleague Letter Optics and Photonics, NSF 14-091, ENG/MPS/CISE (Dagenais, Goldberg)
- ENG-MPS a joint initiative on Scalable Nanomanufacturing (SNM), NSF 12-544 (Kaul) & NSF 13-545 (Pavlidis)
- Dear Colleague Letter Designing Materials to Revolutionize and Engineer our Future (DMREF), NSF 13-026 and NSF 14-027, (Pavlidis)
- WTEC Study (International) 2D and 3D Composite Materials and Related Manufacturing Issues with ENG/MPS/CISE, AFOSR, NIST, and ONR (Initiated)
- MRI, GOALI, Brain Initiative & INSPIRE

- 2010 NSF-ECCS Grantees' Conference, in collaboration with the NSF-EPSCoR program, Honolulu, HI, for PIs in their 3rd and 4th years of research grants, to evaluate ECCS investments, U. of Hawaii system, Nov. 30-Dec. 3, 2010, (Varshney)
- US-Russia Workshop on Emerging Trends in Bioelectronics, June 27-29, 2011, St. Petersburg, Russia, (Varshney)
- NSF (ENG, MPS) AFOSR Workshop on 2D Materials and Devices Beyond Graphene, Arlington, VA, May 30-31, 2012, (Kaul)
- Interagency 2013 International Conference on Frontiers of Characterization and Metrology for Nanoelectronics", sponsored by NIST, NSF, CEA-LETI, SUNY Albany, SEMI, SEMATECH, EDS, APS, AVS, & SRC, Maryland, March 25-28, 2013, (Varshney)
- NSF Workshop on the Frontiers of Additive Manufacturing Research and Education, July 11-12, 2013, Arlington, VA, (Pavlidis)
- Workshop on Open Access Phonics Integration Foundry, Washington DC, (DARPA, AFOSR, ARL, OSA, & OIDA) Sept. 17, 2013, (Dagenais/Zavada)
- OSA Nanophotonic Device: Beyond Classical Limits Incubator Meeting, May 14-16, 2014, Washington, DC, (Pavlidis/Zavada/Dagenais)

Student Support and Future Workshops

- Undergraduate student support to attend the "2014 IEEE International Microwave Symposium (IMS)", Tampa, FL, (Pavlidis)
- Graduate student support to participate in the "5th Annual Non-volatile Memories Workshop 2014, (NVMW 2014)" U. of California, San Diego, March 9-11, 2014, (Varshney)
- Graduate student support to participate in the "2014 Workshop on Compound Semiconductor Materials & Devices (WOCSEMMAD)", Feb. 16-19, 2014, San Antonio, TX, (Pavlidis)
- US Ireland Workshop on "Wireless Communications and Sensing Devices, Components and Systems", Dublin, Ireland, Sept. 30-Oct. 1, 2014, (Pavlidis/Haddad)
- "Paper Electronics", NSF (ENG, DMR, CISE), ARL, SRC & USDA, Andrew Steckl, U. of Cincinnati, August 22-23, 2015, (Varshney)
- "Silk Electronics", John Rogers, U. of Illinois at Urbana-Champaign & Michel Maharbiz, U. of California-Berkeley , June 4-5, 2015, (Varshney)


- NSF-Ireland Partnerships:
- ECCS 1407765 US/Ireland R&D Partnership:

Understanding the Nature of Interfaces in Two Dimensional Electronic Devices (UNITE)

PI: Prof. Robert M. Wallace, University of Texas at Dallas

Co-Pls: Prof. Chadwin Young, Prof. Christopher Hinkle, University of Texas at Dallas,

ECCSS 1407540 - US-Ireland Collaborative Research on Nano-GaN Power Electronic Devices
PI: Prof. Zheng J Shen, Illinois Institute of Technology
Co-PIs: Prof. Peter James Parbrook, University College Cork,
Prof. Miryam Arredondo-Arechavala,, Queen's University Belfast interdisciplinary and more for Ireland....

NSF support UCSC researchers to study endangered Irish language

An image of a flickering tongue may help preserve the endangered Irish language Ultrasound-based approach: UC Santa Cruz student Andrew Iliuta wears head gear

designed for UCSC researchers

- Linguists estimate that about half of the world's languages are going to be gone within 100 years

- The future of Irish, also known as Gaelic, is uncertain. Once the primary language of Ireland a few centuries ago, now only 1.5 to 3 percent of the population are native speakers

- Grant to document the tongue movement of native Irish speakers using ultrasound.

Questions

Dr. Dimitris Pavlidis

Program Director Electronics, Photonics, and Magnetic Devices Division of Electrical, Communications and Cyber Systems (ECCS) Directorate for Engineering National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230

E-mail: dpavlidi@nsf.gov; Tel: +1 703 292-2216

http://www.nsf.gov/eng/eccs/aboutjsp