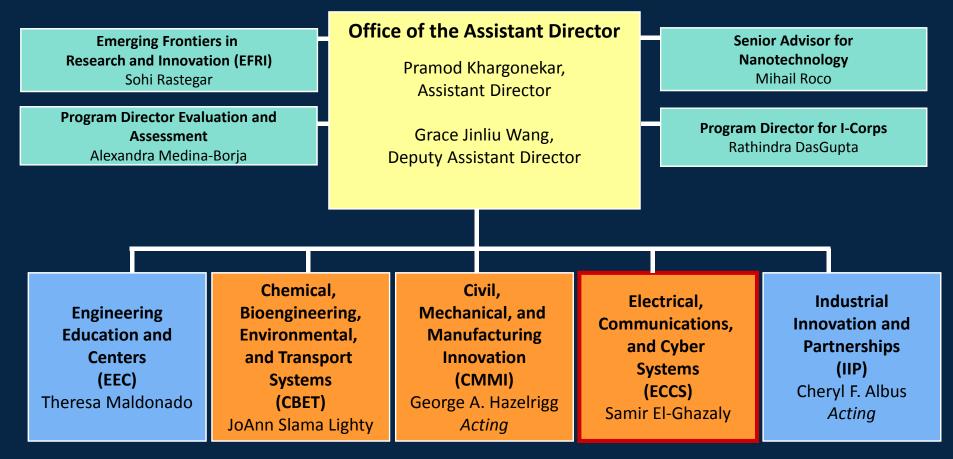

An Overview of NSF and the ECCS Division

Samir El-Ghazaly

Division Director Electrical, Communications and Cyber Systems (ECCS) Division Engineering Directorate National Science Foundation Arlington, VA


NSF's Origin, Mission, and Structure

- Independent federal agency established by Congress in the NSF Act of 1950
 - * "To Promote Progress of Science," and "Advance National Health, Prosperity, and Welfare," and "Secure the National Defense"
- Supports fundamental research and education across all fields of science and engineering
- Sponsors research primarily through grant mechanism, but operates no laboratories
- Discipline-based structure with cross-disciplinary mechanisms
- Uses "rotators" or IPAs primarily from universities
- FY2013 budget of \$5.6 billion for Research and Related Activities (R&RA) – FY2014 Budget for R&RA ~ \$6.2 billion (~\$7.6 Billion Operating Plan).

NSF ENG Organization

Electrical, Communications, and Cyber Systems (ECCS) **Division Director** Samir El-Ghazaly **Senior Engineering Advisor Program Support Manager Acting Deputy Director** Cynthia Greene Lawrence Goldberg Dominique Dagenais¹ Communications, Circuits, and Electronics, Photonics, and Energy, Power, Control and Magnetic Devices (EPMD) Sensing Systems (CCSS) Networks (EPCN)² Usha Varshney Zhi (Gerry) Tian Kishan Baheti **Dimitris Pavlidis** George Haddad Paul Werbos (Vacant) Mona Zaghloul Eyad Abed Optics and Photonics Group³

1. Susan Kemnitzer is now serving as Deputy Division Director for CBET

- 2. Formerly Energy, Power and Adaptive Systems (EPAS)
- 3. New in FY14

Mahmoud Fallahi Dominique Dagenais⁴

4. Currently serving as Acting Deputy Division Director for ECCS

Electrical, Communications and Cyber Systems (ECCS)

Susan Kemnitzer, Division Deputy Director • Samir El-Ghazaly, Division Director

Lawrence Goldberg, Senior Engineering Advisor

Electronics, Photonics, and Magnetic Devices (EPMD)

Dimitris Pavlidis

- Microwave/mm-Wave/THz Devices & Components, Electromagnetic Effects and Components based on them
- Nanoelectronics & Next Generation Devices, Semiconductor Material - Device Interaction and Reliability
- Widebandgap Semiconductors and Devices, Circuits, Device/Circuit Simulation & Modeling
- Metamaterial and Plasmonic-Based Devices & Components

(Vacant)

- Flexible, Printed and Organic Electronics & Photonics
- Carbon-based Electronics
- "Beyond" graphene 2D materials and devices
- Nano-electronics and Energy-Efficient electronics

Usha Varshney

- **Bioelectronic and Biomagnetic Devices**
- Magnetics, Spin Electronics and Quantum Devices
- Sensor Device Technologies
- Next Generation Memories

Optics & Photonics Group

(Mahmoud Fallahi & Dominique Dagenais)

- Nanophotonics, Metamaterials & Plamonics
- Advanced Optical Sources & Photo-detectors
- Nonlinear & Ultrafast Photonics
- Photonics Integrated Circuits
- **Optical Communication Components**
- Single-photon and Quantum Devices
- **Optical Imaging & Sensing**
- Solar Cells & Photovoltaic Components

Communications, Circuits, and Sensing-Systems (CCSS)

Zhi (Gerry) Tian

- RF/Wireless, Optical, and Hybrid Communications and Networking
- Integrated Sensing, Communication, and **Computational Systems**
- Spectrum Access and Spectrum Sharing, Cognitive Radio
- Signal Processing and Compressive Sampling
- Cyber Physical Systems and Security.

George Haddad

- Low Power, Low Noise, High Efficiency Communications
- Inter- and Intra-Chip Communications and Networking including THz and optical guided and wireless interconnects.
- Wireless Communications and Sensing circuits and systems.
- Integrated Circuit Design (Mixed-Signal, Fault-Tolerant, Self -Test and Repair, Stochastic Desian)
- Real-Time Monitoring and Stimulation of the Brain and other Body functions in natural environments

Mona Zaghloul

- Micro, Nano, and Bio Systems (MEMS/NEMS)
- Chemical, Biological and Physical Diagnostics
- Sensors, Actuators and Electronic Interfaces (Brain and other Body functions, Health, Infrastructure and Environment)
- Ultra-Low power wearable and implantable sensing and imaging systems.

Energy, Power, Control and **Networks (EPCN)**

EPCN Group (Eyad Abed, Kishan Baheti, & Paul Werbos)

- Control Theory and Hybrid Dynamical Systems
- Distributed and Mobile Networked Control
- Cyber Physical Systems Modeling and Control
- Control and Optimization in Healthcare, Transportation and Robotics
- Adaptive and Intelligent Systems/Neural Networks
- Energy Harvesting and Storage Devices and Systems
- Solar, and Wind Energy and Integration of Renewables with Grid
- Monitoring, Protection and Cyber Security of Power Grid
- Advanced Power Electronics and Electric Machines
- Design and Operation of Microgrids
- Electric and Hybrid Vehicles Integration with Grid
- Policy, Economics and Engineering of Power Grid
- Quantum theory and modelling for systems and devices - QMHP (Paul Werbos)

ECCS Mission

- Address fundamental research issues at the <u>nano, micro,</u> <u>and macro scales</u> underlying device and component technologies, energy and power, controls, networks, communications, computation, sensing and cyber systems
- Support integration of <u>systems principles</u> in complex engineering systems and networks for a variety of applications areas
- Ensure <u>education</u> of a diverse workforce to meet the technological challenges of a 21st century global economy

ENG R&RA Budget (\$M)

ENG Division	FY 2013 Actual	FY 2014 Estimate	FY 2015 Request	Change over FY 2014 Estimate	
				Amount	Percent
CBET	\$167.01	\$173.00	\$174.99	\$1.99	1.2%
СММІ	200.81	209.20	210.40	1.20	0.6%
ECCS	104.58	110.06	110.41	0.35	0.3%
EEC	115.21	122.24	117.38	-4.86	-4.0%
IIP	202.41	205.97	213.69	7.72	3.8%
SBIR/STTR	161.34	159.39	164.99	5.61	3.5%
EFRI	30.16	30.60	31.30	0.70	2.3%
ENG TOTAL	\$820.18	\$851.07	\$858.17	\$7.10	0.8%

Totals may not add due to rounding

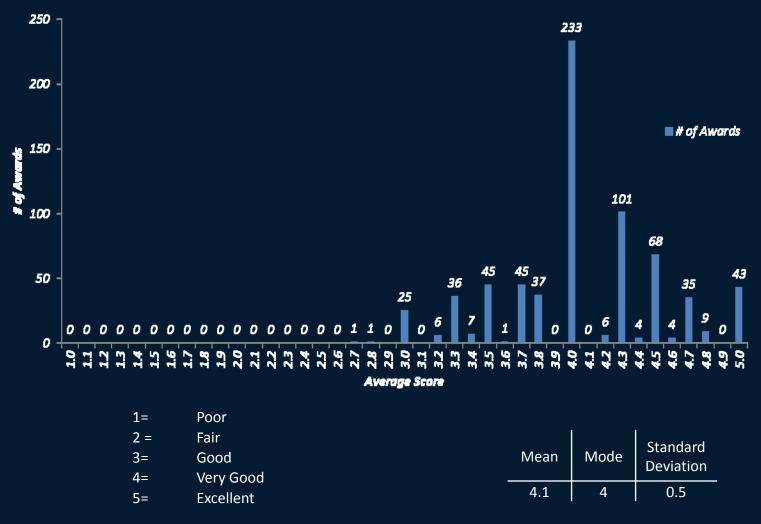
Funding Activities

Core programs

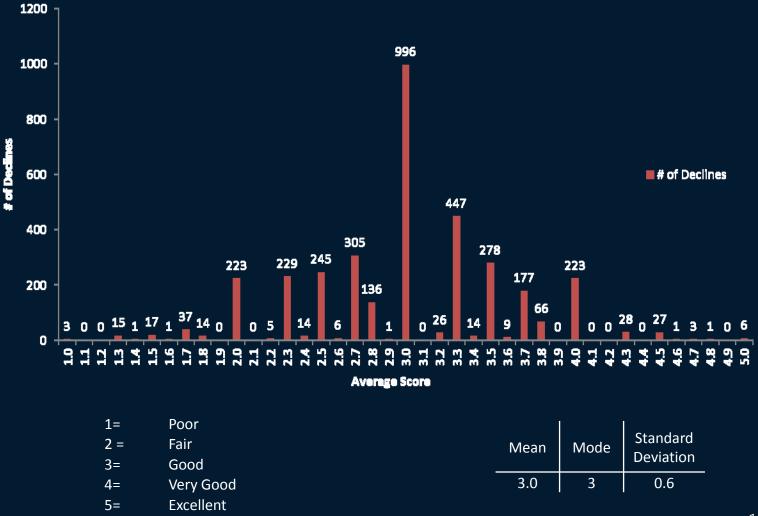
- Unsolicited: One window (October 1 November 1 Annually)
 - Early-concept Grants for Exploratory Research (EAGER)

• Current Initatives

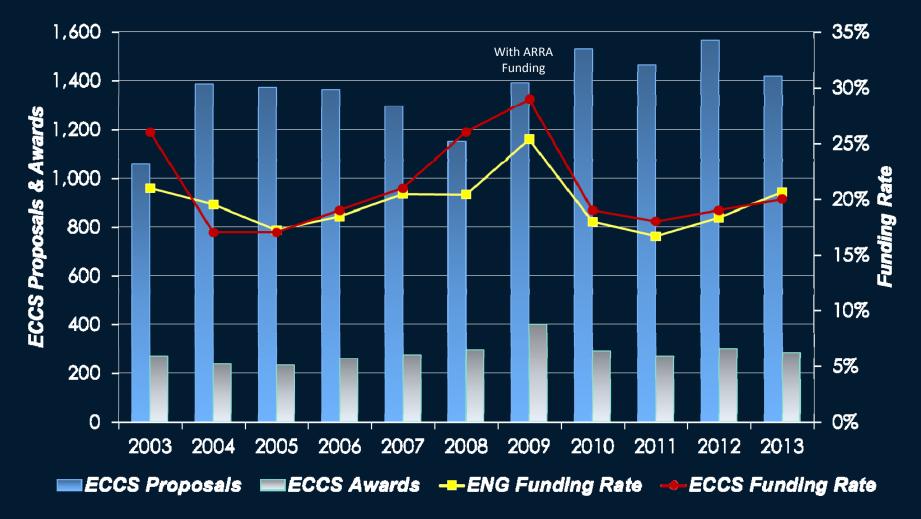
- > Faculty Early Career Development (CAREER)
- Emerging Frontiers in Research and Innovation (EFRI)
- > Cyber-Physical Systems (CPS)
- > Major Research Instrumentation (MRI)
- Broadening Participation Research Initiation Grants in Engineering (BRIGE)
- > Enhancing Access to the Radio Spectrum (EARS)
- National Nanotechnology Infrastructure Network (NNIN)
- > Science and Technology Centers (STC)
- > National Robotics Initiative (NRI)
- > Revolutionizing Engineering Departments (RED)
- > Rapid Response Grants (RAPID)


- > BRAIN Initiative
- Grant Opportunities for Academic Liaison with Industry (GOALI)
- Cyber Science, Engineering and Education for Sustainability (Cyber SEES)
- Designing Materials to Revolutionize and Engineer our Future Program (DMREF)
- > Engineering Research Centers (ERC)
- > Scalable Nanomanufacturing (SNM)
- > Failure-Resistant Systems (FRS)
- Integrated NSF Support Promoting Interdisciplinary Research and Education (INSPIRE)
- Research Experiences for Teachers (RET), Undergraduates (REU), and Veterans (REV)

The Merit Review Process at a Glance



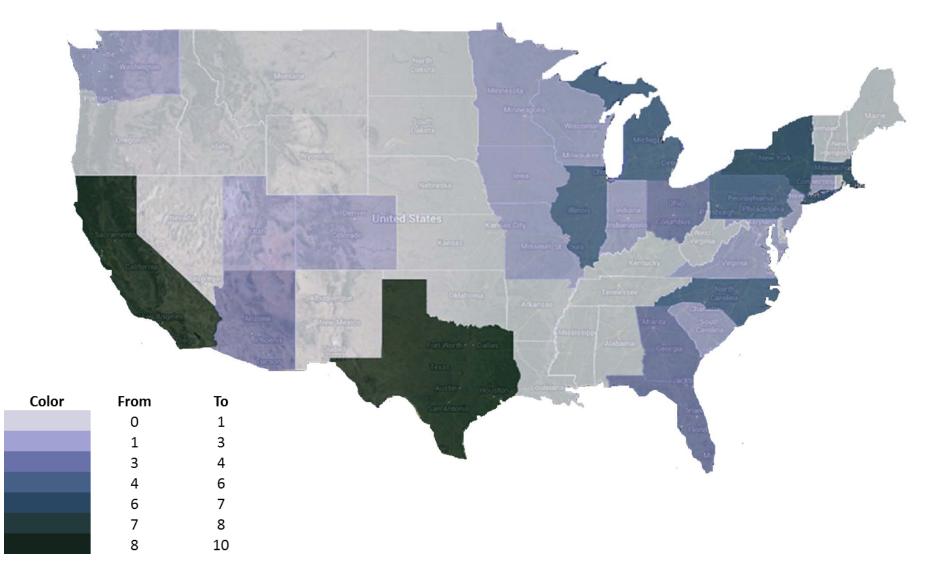
Average Reviewer Score and Awards


Average Reviewer Score and Declines

12

ECCS & ENG Research Grant Proposals and Awards

ECCS Awards (FY11-FY13)


For FY11-FY13:

- Average Total Award \$338,309
- Average Award Duration (Yrs) 2.89
- PIs roughly awarded 85% of requested budget (less as the requested budget nears \$2M)

% of Total ECCS Awards By Instituion Type (FY11-FY13)

FY14 ENG Priorities

- Advanced Manufacturing
- Clean Energy
- National Nanotechnology Initiative
- Cognitive Science and Neuroscience
- Communications & Cyberinfrastructure
- Cyber-Enabled Materials, Manufacturing, and Smart Systems (CEMMSS)
- Education and Career Development
- Interdisciplinary Research
- Research Centers

ECCS Strategic Plan

- Advance sensor- and model-based smart manufacturing and robotics
- Advance semiconductor and optical device design, fabrication and processing for use in biomedical, communications, computing, energy and sensing systems
- Advance research and engineering of energy materials, use, distribution and efficiency
- Focus on composite nanomaterials, two-dimensional nanolayers, nano-electronic logic devices, metamaterials, plasmonics and nanomedicine
- Advance noninvasive or minimally invasive imaging technologies, neuroprosethetics and new neural engineering & technology research
- Advance "smart" systems that can sense and adapt to environmental change for energy, manufacturing, or infrastructure needs
- Emphasize support for CAREER, NRT, IGERT, IUSE and broadening participation at all levels
- Invest in fundamental research that may overcome scientific and/or national challenges and lead to breakthrough technologies (EFRI)
- Maintain support of ECCS funded STCs

Engineering Education

- Professional Formation of Engineers: Revolutionizing Engineering Departments (RED)
- Nanotechnology Undergraduate Education (NUE) in Engineering
- Research in Engineering Education & Research Initiation Grants in Engineering Education
 - how students best learn to become creative and innovative engineers, and how this learning is measured
 - > how cyber-learning resources can be used to develop tools and systems that significantly improve learning
 - > integration of sustainability into engineering education
 - > future directions of U.S. engineering doctoral programs

Thank you!

Questions?